MATHEMATICS

Paper I

Time Allowed : Three Hours

Maximum Marks : 200

INSTRUCTIONS

Candidates should attempt Question Nos. 1 and 5 which are compulsory and any THREE of the remaining questions, selecting at least ONE question from each Section.
All questions carry equal marks.
Marks allotted to parts of a question are indicated against each. Answers must be written in ENGLISH only. Assume suitable data, if considered necessary, and indicate the same clearly.
Unless indicated otherwise, symbols \& notations carry their usual meaning.
Important Note : All parts/sub-parts of a question nust be attempted contiguously. That is, candidates must finish attempting all the parts/sub-parts of each question they are answering in the answer-book before moving on to the next question.
Pages left blank must be clearly struck out. Answers that follow any pages left blank may not be given credit.

Section - A

1. (a) Let $V=\mathbb{R}^{3}$ and $\alpha_{1}=(1,1,2), \alpha_{2}=(0,1,3)$, $\alpha_{3}=(2,4,5)$ and $\alpha_{4}=(-1,0,-1)$ be the elements of V. Find a basis for the intersection of the subspace spanned by $\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\left\{\alpha_{3}, \alpha_{4}\right\}$.
(b) Show that the set of all functions which satisfy the differential equation,
$\frac{d^{2} f}{d x^{2}}+3 \frac{d f}{d x}=0$ is a vector space.
(c) If the three thermodynamic variables P, V, T are connected by a relation, $f(P, V, T)=0$ show that, $\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T} \cong-1$. 8
(d) If $u=A e^{-g x} \sin (n t-g x)$, where A, g, n are positive constants, satisfies the heat conduction equation, $\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}$ then show that $g=\sqrt{\left(\frac{n}{2 \mu}\right)}$.
(e) Find the equations to the lines in which the plane $2 x+y-z=0$ cuts the cone

$$
4 x^{2}-y^{2}+3 z^{2}=0
$$

2. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $f(a, b, c)=(a, a+b, 0)$.
Find the matrices A and B respectively of the linear transformation f with respect to the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$ and the basis $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ where $e_{1}^{\prime}=(1,1,0), e_{2}^{\prime}=(0,1,1)$. $e_{3}^{\prime}=(1,1,1)$.
Also, show that there exists an invertible matrix P such that

$$
\begin{equation*}
B=\bar{P} A P \tag{10}
\end{equation*}
$$

(b) Verify Cayley-Hamilton theorem for the matrix
$A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ and find its inverse. Also express.
$A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial in A. 10
(c) Find the equations of the tangent plane to the ellipsoid $2 x^{2}+6 y^{2}+3 z^{2}=27$ which passes through the line $x-y-z=0=x-y+2 z-9$.

10
(d) Show that there are three real values of λ for which the equations :
$(a-\lambda) x+b y+c z=0, b x+(c-\lambda) y+a z=0$, $c x+a y+(b-\lambda) z=0$ are simultaneously true and that the product of these values of λ is
$D=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
3. (a) Find the matrix representation of linear transformation T on $V_{3}(\mathbb{R})$ defined as $T(a, b, c)=(2 b+c, a-4 b, 3 a)$
' corresponding to the basis $B=\{(1,1,1),(1,1,0),(1,0,0)\} . \quad . \quad 10$
(b) Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface is 432 sq. cm .
(c) If $2 C$ is the shortest distance between the lines
$\frac{x}{l}-\frac{z}{n}=1, y=0$
and $\frac{y}{m}+\frac{z}{n}=1, x=0$.
then show that
$\frac{1}{l^{2}}+\frac{1}{m^{2}}+\frac{1}{n^{2}}=\frac{1}{c^{2}}$.
(d) Show that the function defined as
$f(x)=\left\{\begin{array}{cc}\frac{\sin 2 x}{x} & \text { when } x \neq 0 \\ 1 & \text { when } x=0\end{array}\right.$
has removable discontinuity at the origin. 10
4. (a) Find by triple Integration the volume cut off from the cylinder $x^{2}+y^{2}=a x$ by the planes $z=m x$ and $z=n x$.
(b) Show that all the spheres, that can be drawn through the origin and each set of points where planes parallel to the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ cut the co-ordinate axes, form a system of spheres which are cut orthogonally by the sphere

$$
\begin{equation*}
x^{2}+y^{2}+2 f x+2 g y+2 h z=0 \tag{10}
\end{equation*}
$$

if $a f+\dot{b} g+c h=0$.
(c) A plane makes equal intercepts on the positive parts of the axes and touches the ellipsoid $x^{2}+4 y^{2}+9 z^{2}=36$. Find its equation. 10
(d) Evaluate the following in terms of Gamma function:

Section-B
5. (a) Solve $\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y$.
(b) Solve and find the singular solution of $x^{3} p^{2}+x^{2} p y+a^{3}=0$.

$$
8
$$

(c) A particle is projected vertically upwards from the earth's surface with a velocity just sufficient to carry it to infinity. Prove that the time it takes to reach a height h is

$$
\begin{equation*}
\frac{1}{3} \sqrt{\left(\frac{2 a}{g}\right)}\left[\left(1+\frac{h}{a}\right)^{3 / 2}-1\right] \tag{8}
\end{equation*}
$$

(d) A triangle $A B C$ is immersed in a liquid with the vertex C in the surface and the sides $A C$, $B C$ equally inclined to the surface. Show that the vertical C divides the triangle into two others, the fluid pressures on which are as , $b^{3}+3 a b^{2}: a^{3}+3 a^{2} b$ where a and b are the sides $B C \& A C$ respectively.
(e) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}$,
$w=y z+z x+x y$,
prove that $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$ are coplanar.
6. (a) Solve :

$$
\begin{equation*}
x^{2} y \frac{d^{2} y}{d x^{2}}+\left(x \frac{d y}{d x}-y\right)^{2}=0 \tag{10}
\end{equation*}
$$

(b) Find the value of $\iint_{s}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d s}$
taken over the upper portion of the surface $x^{2}+y^{2}-2 a x+a z=0$ and the bounding curve lies in the plane $z=0$, when

$$
\begin{aligned}
& \vec{F}=\left(y^{2}+z^{2}-x\right) \vec{i}+\left(z^{2}+x^{2}-y^{2}\right) \vec{j} \\
& \quad+\left(x^{2}+y^{2}-z^{2}\right) \vec{k}
\end{aligned}
$$

(c) A particle is projected with a velocity u and strikes at right angle on a plane through the plane of projection inclined at an angle β to the horizon. Show that the time of flight is
$\frac{2 u}{g \sqrt{\left(1+3 \sin ^{2} \beta\right)}}$,
range on the plane is $\frac{2 u^{2}}{g} \cdot \frac{\sin \beta}{1+3 \sin ^{2} \beta}$
and the vertical height of the point struck is $\frac{2 u^{2} \sin ^{2} \beta}{g\left(1+3 \sin ^{2} \beta\right)}$ above the point of projection.
(d) Solve $\frac{d^{4} y}{d x^{4}}+2 \frac{d^{2} y}{d x^{2}}+y=x^{2} \cos x$.
7. (a) A particle is moving with central acceleration $\mu\left[r^{5}-c^{4} r\right]$ being projected from an apse at. a distance c with velocity $\sqrt{\left(\frac{2 \mu}{3}\right) c^{3}}$, show that its path is a curve, $x^{4}+y^{4}=c^{4}$.
(b) A thin equilateral rectangular plate of uniform thickness and density rests with one end of its base on a rough horizontal plane and the other against a small vertical wall. Show that the least angle, its base can make with the horizontal plane is given by

$$
\cot \theta=2 \mu+\frac{1}{\sqrt{3}}
$$

μ, being the coefficient of friction.
(c) A semicircular area of radius a is immersed vertically with its diameter horizontal at a depth b. If the circumference be below the centre, prove that the depth of centre of pressure is

$$
\begin{equation*}
\frac{1}{4} \frac{3 \pi\left(a^{2}+4 b^{2}\right)+32 a b}{4 a+3 \pi b} \tag{13.}
\end{equation*}
$$

8. (a) Solve $x=y \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$.
(b) Find the value of the line integral over a circular path given by $x^{2}+y^{2}=a^{2}, z=0$, where the vector field,

$$
\begin{equation*}
\vec{F}=(\sin y) \vec{i}+x(1+\cos y) \vec{j} \tag{10}
\end{equation*}
$$

(c) A heavy elastic string, whose natural length is $2 \pi a$, is placed round a smooth cone whose axis is vertical and whose semi vertical angle is α. If W be the weight and λ the modulus of elasticity of the string, prove that it will be in equilibrium when in the form of a circle whose radius is ${ }^{\circ}$

$$
\begin{equation*}
a\left(1+\frac{W}{2 \pi \lambda} \cot \alpha\right) . \tag{10}
\end{equation*}
$$

(d) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=(1-x)^{-2}$.

